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Automotive: Use Cases and Customers

User Comfort and Assist Automated Driving
(Inside the Venhicle) (Outside the Vehicle)



Mercedes Benz MBUX (Paris Auto Show 18)




AUTOMOTIVE 2021

1

Method and system for triggering an event in a vehicle

Embodiments of present disclosure relates to method for identifying a hand pose in a vehicle, and a system for performing an event in a vehicle. A hand image for a hand in the

\

vehicle, is extracted from a vehicle image of the vehicle for identification. Plurality of contextual images of the hand image is obtained based on the single point. A hand pose
associated with the hand is identified based on the plurality of contextual features using a classifier model.

AUTOMOTIVE 2021

System and method for deployment of airbag based on head pose estimation

Advanced airbag deployment control system designed for vehicular use incorporating an image sensor unit that captures real-time images of a vehicle occupant, focusing
particularly on head localization. Utilizing a processing unit equipped with Long Short Term Memory (LSTM) neural network architecture, the system analyzes images to determine
and predict the future position and orientation of the occupant's head. The system dynamically adjusts the direction in which the airbag flap is removed and the airbag's inflation
pressure, ensuring optimal safety by adapting the deployment to the predicted head position at the moment of impact.

AUTOMOTIVE 2019

Method for Identifying a Hand Pose in a Vehicle

A method for activating vehicle functions via hand gestures, utilizing a 3D Convolutional Neural Network (3D-CNN) and Gated Recurrent Unit (GRU) to analyze video frames and
extract spatio-temporal features. A prediction module simultaneously assesses the gesture's progression and classifies it, employing predefined models to determine the gesture's
type and its completion rate. Upon accurate detection and classification, a corresponding event is triggered within the vehicle.
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Autonomous Driving: Pedestrians and VRUs

Impact

O1. Research Collaboration: Co-authored the research paper "VRU Pose-SSD: Multiperson Pose Estimation for Automated Driving" with Bosch, Mercedes, and
the Indian Institute of Science.

02. NCRAP Compliance: The predictive pedestrian protection system meets NCAP requirements for automatic emergency braking.

03. Potential of Automatic Emergency Braking: Shows significant potential in preventing or mitigating frontal collisions with pedestrians at speeds up to 60
km/h, significantly reducing injury risks, avoiding or mitigating half of the accidents with cyclists resulting in personal injury in Germany, and reducing up
to 30% of relevant pedestrian accidents.



History of Autonomous Cars

m Eureka Project PROMETHEUS
Europe between 1987-1995

m VITA Il by Dalmler Benz

driving on highways

m DARPA Grand Challenge in 2004 - all participants
FAILED to finish the 150-mile off-road track.




History of Autonomous Cars — cont.

m Another similar DARPA Grand Challenge
was held in 2005. This time five teams
managed to complete the off-road track
without any human interference.
Velodyne supplier to all teams.

@ DARPA Urban Challenge held in 2007,
test environment that was modelled after
a typical urban scene. Six teams
managed to complete the event
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Nobody won. Nobody finished. Yet the first DARPA race left an
indelible mark

Nobody won, but participants fondly recall the race that started the push toward the modern-day autonomous
vehicle industry.
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Top Hit <« Post

@ MAXPAUL FRANKLIN &

PP @MAXPAULFRANKLIN

Waymo One Wallet WA Business

My Crazy True Story

y

On April 1st, Tesla unlocked Full Self-Driving capability for all Tesla
vehicles in America. In a moment of dire need, at 2:00 am the following
morning, | found myself grappling with severe dehydration and a blood
Suggestions glucose level of 670 due to a malfunction in my insulin pump. With no
—_— time to spare, | turned to my Model Y for assistance. Engaging the new
' Full Self-Driving feature with a simple double click on the steering
wa

e - e——

/ column stalk, | was astounded by the results. Without any intervention,
the car skillfully navigated the 13-mile journey from my home to the VA
Emergency Room, offering to autonomously park it upon arrival and let
‘ Car Wash me seek immediate n}edic:fll attention_. D_espite enduring? mild heart
attack, | left the hospital with no restrictions on my exercise regimen, a
testament to the swift and efficient response facilitated by the vehicle
and the # 1 VA in America. As an owner of luxury vehicles including
Q walmart Porsche, Mercedes, BMW, Acura, and Cadillac, | can unequivocally
declare Tesla the pinnacle of automotive innovation today. Its lifesaving
capabilities in critical moments underscore its superiority. The leap from
Settings Search in App traditional vehicles to Tesla's Full Self-Driving functionality is like
. S— upgrading from a basic phone to a smartphone. As a resident of a solar-
powered home, the cost of energy for the last 7000 miles has been
minimal, I've saved nearly $1000. | extend my gratitude to Elon Musk for

Wa"paper his crazy erratic leadership in advancing technology that is more than
just transportation. As someone who shares Elon's place "on the
spectrum”, | am particularly appreciative of his commitment to
excellence and innovation. He has profoundly impacted our world and
personally impacted my own. Thanks, Tesla, and thanks, Charles George
VA Medical Center team!




Genuine Progress getting Masked

0 Automated emergency Ehe New Pork Eimes
braking is standard on
every new car as of FUTURE OF TRANSPORTATION
September 2022 - 2016

agreement - automakers, As Driverless Cars Falter, Are

l.I.H.S., National Highway

Traffic Safety Administration
O Radar or camera-linked

brakes have cut police- With investigations and lawsuits over accidents adding

reported rear-end collisions
by a 50% (I.I.H.S.)

O Automated pedestrian braking has reduced the number of car-human collisions
by 30% versus cars without the feature.

O And anti-lock brakes; cameras, radar and ultrasonic sensors to manage blind
spot and lane departure monitors; and adaptive cruise control have become
standard

‘Driver Assistance’ Systems in

Closer Reach?

skepticism toward fully driverless technology, car companies are
betting on systems that take some, but not all, control.
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End-to-end or Modular?

® And we can do autonomy algorithms either using:
®m Endto End Systems

End-to-end deep learning

@
P

Uncertainty propagation
from sensing to action

Inputs: camera video and @ Qutputs: driving
sat-nav commands

13



End-to-end or Modular?

® And we can do autonomy algorithms either using:
B Endto End Systems or

B Modular Systems
= Perception
= Scene Representation and Localization
= Prediction
= Planning and decision making

= Vehicle control

SeEeE PlannO:ng
Perception Representation Prediction and Vehicle Control
Decision

and Localization i
Making

14



Perception

—

(i)

Perception
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Perception: Autonomous Driving

< perception
/pa sepf(s)n/

noun

1. the ability to see, hear, or become aware of something through the senses.

16



eption: Autonomous Driving

Ing objects static objects l

lane lines ——»
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Perception: Long Tall

Each task has additional sub-task: e.g.: object types, vehicle classes,
blinkers, brakes, parked, collision, etc.

18



Perception: Long Tall

Even a sub-task is (car detection) a very difficult problem! Note, 97% is not
good enough, finally we need 99.9999%

19



The Long Tail Problem

m Want to capture behaviour corner cases, but those by
definition do not much training data.

Unbiased input representation
Complex model

SRS —

, Human Behavior Distribution .
Conservative Aggressive

20



The Long Tail Problem — skydio 2+

Skydio X2 obstacle avoidance is off
during GPS Night Flight mode and can
be impaired when in low light & poor
visibility. Fly with extreme caution
under these conditions.

Skydio does not avoid moving
objects or cars.

Navigation scenarios
| I .

Use caution around reflective surfaces

(still water, mirrors, etc.) and small
obstacles (thin branches, utility lines,
ropes, chain link fencing, etc.)




he Long Tail Problem




Another example — Traffic Sign Recognition

ﬁl;\ |

:

¥
Type (main, Scaling 32x32
dd, complex) T
Scaling Element
crop (CNN

(CNN/55D) Sign Classification

Segmentation Text 4 of traffic signs

SSD for lanes, Cro Scaling 12px h eg.
[ icons, text) " SpeedLimit50)

Detector

DCR (LSTM)

r

Parent
Association

Processing node 1

® Low latency, high accuracy system




The Long Tail Problem




Scene Representation and Localization

Scene
Representation
and Localization
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tion: LIDAR

.

o
[ e T
PETREerre -
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Localization: Only Vision

27



Scene Representation: Autonomous Driving

AS



Scene Representation and Localization

9:

Prediction
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Prediction: Autonomous Driving

Bike Intention
in 3 seconds

go straight turn right stop at
traffic light
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Prediction: Autonomous Driving

Cruise recalls its robotaxis after passenger injured in crash

B\ By Matt McFarland, CNN Business
W Updated 1927 GMT (0327 HKT) September 1, 2022

Washington, DC (CNN Business) — This week Cruise, which counts General Motors as its largest
shareholder, became the first robotaxi operator to recall its vehicles, following a June crash
involving "major" damage and minor passenger injuries.

The crash occurred after the Cruise roos g a left turn stopped In the intersectior

~

‘hinkina that an oncomina
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Irove straight, striking the Cruise vehicle. Both the San Francisco police department and
National Highway Traffic Safety Administration launched investigations.

Cruise has said that the oncoming vehicle drove in the right-turn lane and was traveling at
"approximately 40 mph" in a 25-mph lane before it exited the lane and proceeded forward.
Cruise acknowledged in its recall filing that its robotaxi was not "sufficiently reactive." Cruise
spokeswoman Hannah Lindow declined to say what the Cruise vehicle could have done
differently, and declined to release video of the crash.




Prediction: In the Sky

-®
Congratulations Zipline for revealing its acoustic-

based detect and avoid technology. Fantastic
ingenuity!

They, like an electro-optical sense and avoid system, g
propose an acoustic localization technique. They are !
not reliant on ground infrastructure. We applaud 2L
Zipline for their efforts in propelling the #drone -
industry ahead. It is an addition to flying safely, at
scale, in any airspace, is a big step to enable drones to
identify and avoid impediments in any airspace
effectively, safely, and consistently.

Zipline uses a technique that has been used for many
years: sound, yet in a totally new way. We admire this!

v
-

#innovation #drones #BVLOS #DroneAl

Rishabh Choudhary Srishti Singh Shaunak Joshi
Swaroop B Deshpande Arjun Jain

CC'O' ou and 103 others 5 comments + 3 5




Scene Representation and Localization

Planning
and
Decision
Making
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Planning: Autonomous Drlvmg
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Scene Representation and Localization

Vehicle Control

35



Vehicle Control: Autonomous Driving

m Execute path from Motion Planning by giving relevant
actuator commands (steering, acceleration, brake, etc.)

m However, tracking errors are generated due to
Inaccuracies in vehicle model (e.g. wheel slip during hard
breaking)

m Two approaches to fix these errors:

m Classic control: Feedback control uses the measured system response
and actively compensates for any deviations

®m Model predictive control

36



Modular Vs End-to-End

e
C=E) =
Scene PlannO:ng
Perception Representation Prediction D and Vehicle Control

and Localization ecision

Making
=
=
=
=
=
=



Modular Vs End-to-End

38

Neural Network

Vehicle Control



End-to-end Learning - Wayve




End-to-end Learning - Wayve

® And we can do autonomy algorithms either using:
®m Endto End Systems

Driving Input, 108 dimensions Representation SIgNal . « . v v v v s e s ,  Driving Output,
......... 10" dimensions

@ H Motion

:o O: Vehicle
” ~ Controls

Cameras (6 @ 25 Hz)
2 GNSS

Goal conditioning from
& standard sat-nav map

. Vehicle state .
Decoded human-interpretable
intermediate representations

+ others where required

attention, uncertainty, semantics, geometry, motion, etc.




Emergent Behaviour - Wayve

Attention

O End-to-end Transformer
Architecture for driving
model

O Attention changes from
Traffic lights to road when
it turns

Driving Plan

Cross-Attention
Transformer Decoder

Task Query

Speed & Steering

OxN

41



Hybrid: Joint Perception and Prediction

Long Term Predictions i
it |
[ Vepe | = '
|
» §C5) : N
|
Sensors | Planning
: ' and :
Perception Prediction : Decision Vehicle Control
Making

m  Mix of both Modular and end-to-end

42



Hybrid: Joint Perception and Prediction

= (((&a)))

Long Term Predictions

‘ Maps ‘

‘ Sensors ‘

Planning

. Vehicle Control
Decision
Making

Perception

Prediction

Voxelized LIDAR ‘
Safe, Interpretable, trainable end-to-end

Trajectory

Semantic Occupancy

Motion
Forecasting

Planning

Raster Map & Rout

J. Phillips, J. Martinez, I. A. BA¢rsan, S. Casas, A. Sadat and R. Urtasun S. Casas, A. Sadat and R. Urtasun

Deep Multi-Task Learning for Joint Localization, Perception, and Prediction MP3: A Unified Model to Map, Perceive, Predict and Plan (oral)

In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June
2021 2021

43



Classical vs Modern ML Systems

44



The Factory: Data Engine

~ Data source

deploy train clean

identify an data
Inaccuracy engine

Junit tests

45



Sensors: Complementary and Redundant

Vision system

Vision/Camera
Radar

LIDAR
Location
Ultrasonic

I

Radar system LIDAR system

Boeing 737 MAX AOA sensor did not have proper redundancy!




Sensors: Complementary and Redundant
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Boeing 737 Max

Federal Aviation
y Administration

Use of Single Angle of Attack (AOA) Sensor In the original design, erroneous data from a single AOA
sensor activated MCAS and subsequently caused airplane nose-down trim of the horizontal stabilizer.

In the new design, Boeing eliminated MCAS reliance on a single AOA sensor signal by using both AOA
sensor inputs and through flight-control law changes that include safeguards against failed or
erroneous AOA indications. The updated FCC software with revised flight-control laws uses inputs
from both AOA sensors to activate MCAS. This is in contrast to the original MCAS design, which relied
on data from only one sensor at a time, and allowed repeated MCAS activation as a result of input from
a single AOA sensor. The updated FCC software compares the inputs from the two sensors to detect a
failed AOA sensor. If the difference between the AOA sensor inputs is above a calculated threshold,
the FCC will disable the STS, including its MCAS function, for the remainder of that flight and
provide a corresponding indication of such deactivation on the flight deck.

Date: November 18, 2020




Long Range Camera + Radar 360 Lidar + 360 Vision System

Perimeter Lidar +
Peripheral Vision System + Radar

Perimeter Lidar +
Perimeter Vision System

Perimeter Lidar +
Perimeter Vision System

1

Peripheral Vision System
+ Radar




Sensor-Setup Comparison

m Tesla Model S: Reliable environment perception only in
standard driving use cases; most corner cases not
manageable or with severe restrictions and no
redundancy

m Google “Koala”: Very good near-field due to availability
of LIDAR. Two different types of LIDAR

m Uber XC 90: Problems anticipated for the case of
entering priority roads due to
(they have to rely on radar only!)

50



Simulation iIs essential

51



Object Reconstruction . .
Scenario Generation and

Testing

LIDAR Simulation

= /
/ !
/

- ) /B ‘\ \
/
. o \
Camera Simulation mQle World /

Learning to Drive

Reactive and Intelligent
Actor Models

Update world state

Y



Simulation — all the way to the Sensors!

/i C Simulated Vi o 3 % > S
HIpE- Y3 CIHIRIESIIRIAESA VAGS0, Realistic Traffic-aware Geometrically Consistent

GeoSim




Simulation

Simulation! 'Io M

simulated miles
per day

S. Tan, K. Wong, S. Wang, S. Manivasagam, M. Ren and R. Urtasun
SceneGen: Learning to Generate Realistic Traffic Scenes
In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021

J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, R. Urtasun
AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles
In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
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Copilot4D: Fundamental Models for AV

Similar to how LLMs learn by predicting the next word in a sentence, Copilot4D learns by predicting how a machine will observe
the world in the future. However, while LLMs learn from discrete tokens that represent words, LIiDAR data is continuous in
nature. To bridge this gap between language and the physical world, Copilot4D features a 3-stage architecture.

e First, a LIDAR tokenizer abstracts continuous sensor data into a set of discrete tokens, similar to words in language.

e Then, our foundation model forecasts how the world will evolve as a set of tokens, leveraging the recent breakthroughs in
LLMs. Importantly, it takes into account how the future actions of the embodied Al agent will affect the world.

e Finally, a LIDAR renderer brings these tokens back to LiDAR point clouds, something robots can observe just like humans see
through their eyes, enabling us to learn from raw sensor recordings without requiring human supervision.

. | .

A | LiIbDAR __ _ Foundation __ LDAR  _ _ 2 =L
SN Tokenizer Model Renderer \ N




Test Facility: Waymo

Castle, CA (91 acres)
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hat is a good mAP?

m Most metrics lac
on the road

m Consider mAP fc}
threshold for whe
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Is recall of 96.6 for Cars enough?

3D Object Detection Results on KITTI Dataset
Pedestrian

Easy
Moderate
Hard

— | =
S S
7} 0
I5) Q
- L
o o

0.4 0.6 0.8 . 0.4 0.6 0.8

Recall Recall

m Struggles even with the “easy” cases of pedestrians
m Hard to decide on the exact expectations on precision
and recall in object detection
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lnit Testing Perception Systems — example
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sting Perception Systems — examples
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esting Perception Systems — examples

Also extend to 3D (presence and absence polygons)
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Compute Hardware

FSD COMPUTER FSD CHIP

Dual redundant SoCs 14nm FinFET CMOS
Sub 100W 260 mm?2, 6B transistors
144 int8 TOPS

DRIVE PX PEGASUS
LEVEL 5: DRIVERLESS ROBOTAXIS

\.1 Td; <> e ¥ 3 g .:; .
P P - 320 TOPS for Al Inferencing
RIS :
. P ASIL D Functional Safety

NVIDIA.

62



Few Companies going Autonomous
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en will we get truly Autonomous Cars?

SAE AUTOMATION LEVELS

Full Automation

o~ o~ —~
el el Dado
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Autonomy
Level

Human
Involvement

Machine
Involvement

Degr
Automation

Driver Conditional
A

utomation Assistance

Zero autonomy;
tl river performs
all driving tasks.
features may be
included in the
vehicle design

No
Automation

Pilot remains in

control

manual
Drone has

control of at
least one vital
function

NONE

Vehicle is controlled
by the driver, but
some driving assist

steering, but the driver
must remain engaged
with the driving task
and monitor the
environment at
all times.

Automation

Driver is a necessity,
but is not required
to monitor the
environment
The driver must be
ready to take control
of the vehicle at all
times with notice

fall-back
system

Drone
perform all
functi

given certain
conditions

Automation
The vehicle is capable

ng functions
under certain
conditions. The driver
may have the option
to control the vehicle.

Pilot i
the |

the platform
will still be
operational

Automation

Th hicle is capable
of performing all
driving functions

under all conditions.
The driver may

have the option to

control the vehicle

ones will
able to use Al
tools to plan
their flights as

SENSE & NAVIGATE




How far have we come?
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- C 2% https://www.researchgate.net/publication/382158234_A_Root_Cause_Analysis_of a_Self-_Driving_Car_Dragging_a_Pedestrian#fullTextFileContent

<—Cruise AV

Other
Traffic

Draggingey

Figure 1. Simplified diagram of mishap, not to scale.

Cite as: arXiv:2402.06046 [cs.RO]
(or arXiv:2402.06046v2 [cs.RO] for this version)
https://doi.org/10.48550/arXiv.2402.06046 ﬂ






When will we get truly Autonomous Cars?

The Moore’s Law for Self-Driving Observed
Vehicles - - - Predicted

_ - --=--- Human Performance

Edwin Olson [ Follow |
Feb 27,2019 - 9 min read

-
C
o
S
[}
o
©
o
c
O

2

S
—
©
o
0

2

=




Case for India?
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‘sla: Urban and Highway Full AutoPilot
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